
1

Nano: A Feeless Distributed Cryptocurrency
Network
Colin LeMahieu

clemahieu@nano.co

Abstract—Recently, high demand and limited scalability have
increased the average transaction times and fees in popular
cryptocurrencies, yielding an unsatisfactory experience. Here we
introduce Nano, a cryptocurrency with a novel block-lattice ar-
chitecture where each account has its own blockchain, delivering
near instantaneous transaction speed and unlimited scalability.
Each user has their own blockchain, allowing them to update
it asynchronously to the rest of the network, resulting in fast
transactions with minimal overhead. Transactions keep track
of account balances rather than transaction amounts, allowing
aggressive database pruning without compromising security. To
date, the Nano network has processed 4.2 million transactions
with an unpruned ledger size of only 1.7GB. Nano’s feeless,
split-second transactions make it the premier cryptocurrency for
consumer transactions.

Index Terms—cryptocurrency, blockchain, Nano, distributed
ledger, digital, transactions

I. INTRODUCTION

S INCE the implementation of Bitcoin in 2009, there has
been a growing shift away from traditional, government-

backed currencies and financial systems towards modern pay-
ments systems based on cryptography, which offer the ability
to store and transfer funds in a trustless and secure manner
[1]. In order to function effectively, a currency must be
easily transferable, non-reversible, and have limited or no fees.
The increased transaction times, large fees, and questionable
network scalability have raised questions about the practicality
of Bitcoin as an everyday currency.

In this paper, we introduce Nano, a low-latency cryp-
tocurrency built on an innovative block-lattice data structure
offering unlimited scalability and no transaction fees. Nano
by design is a simple protocol with the sole purpose of being
a high-performance cryptocurrency. The Nano protocol can
run on low-power hardware, allowing it to be a practical,
decentralized cryptocurrency for everyday use.

Cryptocurrency statistics reported in this paper are accurate
as of publication date.

II. BACKGROUND

In 2008, an anonymous individual under the pseudonym
Satoshi Nakamoto published a whitepaper outlining the
world’s first decentralized cryptocurrency, Bitcoin [1]. A key
innovation brought about by Bitcoin was the blockchain, a
public, immutable and decentralized data-structure which is
used as a ledger for the currency’s transactions. Unfortunately,
as Bitcoin matured, several issues in the protocol made Bitcoin
prohibitive for many applications:

1) Poor scalability: Each block in the blockchain can store
a limited amount of data, which means the system can
only process so many transactions per second, making
spots in a block a commodity. Currently the median
transaction fee is $10.38 [2].

2) High latency: The average confirmation time is 164
minutes [3].

3) Power inefficient: The Bitcoin network consumes an es-
timated 27.28TWh per year, using on average 260KWh
per transaction [4].

Bitcoin, and other cryptocurrencies, function by achieving
consensus on their global ledgers in order to verify legitimate
transactions while resisting malicious actors. Bitcoin achieves
consensus via an economic measure called Proof of Work
(PoW). In a PoW system participants compete to compute a
number, called a nonce, such that the hash of the entire block
is in a target range. This valid range is inversely proportional
to the cumulative computation power of the entire Bitcoin
network in order to maintain a consistent average time taken to
find a valid nonce. The finder of a valid nonce is then allowed
to add the block to the blockchain; therefore, those who
exhaust more computational resources to compute a nonce
play a greater role in the state of the blockchain. PoW provides
resistance against a Sybil attack, where an entity behaves as
multiple entities to gain additional power in a decentralized
system, and also greatly reduces race conditions that inherently
exist while accessing a global data-structure.

An alternative consensus protocol, Proof of Stake (PoS),
was first introduced by Peercoin in 2012 [5]. In a PoS system,
participants vote with a weight equivalent to the amount
of wealth they possess in a given cryptocurrency. With this
arrangement, those who have a greater financial investment are
given more power and are inherently incentivized to maintain
the honesty of the system or risk losing their investment. PoS
does away with the wasteful computation power competition,
only requiring light-weight software running on low power
hardware.

The original Nano (RaiBlocks) paper and first beta imple-
mentation were published in December, 2014, making it one
of the first Directed Acyclic Graph (DAG) based cryptocur-
rencies [6]. Soon after, other DAG cryptocurrencies began
to develop, most notably DagCoin/Byteball and IOTA [7],
[8]. These DAG-based cryptocurrencies broke the blockchain
mold, improving system performance and security. Byteball
achieves consensus by relying on a “main-chain” comprised
of honest, reputable and user-trusted “witnesses”, while IOTA
achieves consensus via the cumulative PoW of stacked trans-
actions. Nano achieves consensus via a balance-weighted vote

2

Receive Repeat Observe Quorum Confirm

(a) When no conflict is detected, no further overhead is required.

Receive Repeat Observe Conflict Vote Confirm

(b) In the event of a conflicting transaction, nodes vote for the valid transaction.
Fig. 1. Nano requires no additional overhead for typical transactions. In the event of conflicting transactions, nodes must vote for the transaction to keep

on conflicting transactions. This consensus system provides
quicker, more deterministic transactions while still maintaining
a strong, decentralized system. Nano continues this develop-
ment and has positioned itself as one of the highest performing
cryptocurrencies.

III. NANO COMPONENTS

Before describing the overall Nano architecture, we define
the individual components that make up the system.

A. Account

An account is the public-key portion of a digital signature
key-pair. The public-key, also referred to as the address, is
shared with other network participants while the private-key
is kept secret. A digitally signed packet of data ensures that
the contents were approved by the private-key holder. One user
may control many accounts, but only one public address may
exist per account.

B. Block/Transaction

The term “block” and “transaction” are often used in-
terchangeably, where a block contains a single transaction.
Transaction specifically refers to the action while block refers
to the digital encoding of the transaction. Transactions are
signed by the private-key belonging to the account on which
the transaction is performed.

Account A
Block NA

Account A
Block NA − 1

...

Account A
Block 1

Account A
Block 0

Account B
Block NB

Account B
Block NB − 1

...

Account B
Block 1

Account B
Block 0

Account C
Block NC

Account C
Block NC − 1

...

Account C
Block 1

Account C
Block 0

Fig. 2. Each account has its own blockchain containing the account’s balance
history. Block 0 must be an open transaction (Section IV-B)

C. Ledger

The ledger is the global set of accounts where each account
has its own transaction chain (Figure 2). This is a key design
component that falls under the category of replacing a run-time
agreement with a design-time agreement; everyone agrees via
signature checking that only an account owner can modify
their own chain. This converts a seemingly shared data-
structure, a distributed ledger, in to a set of non-shared ones.

D. Node

A node is a piece of software running on a computer that
conforms to the Nano protocol and participates in the Nano
network. The software manages the ledger and any accounts
the node may control, if any. A node may either store the
entire ledger or a pruned history containing only the last few
block of each account’s blockchain. When setting up a new
node it is recommended to verify the entire history and prune
locally.

IV. SYSTEM OVERVIEW

Unlike blockchains used in many other cryptocurrencies,
Nano uses a block-lattice structure. Each account has its own
blockchain (account-chain) equivalent to the account’s trans-
action/balance history (Figure 2). Each account-chain can only
be updated by the account’s owner; this allows each account-
chain to be updated immediately and asynchronously to the
rest of the block-lattice, resulting in quick transactions. Nano’s
protocol is extremely light-weight; each transaction fits within
the required minimum UDP packet size for being transmitted
over the internet. Hardware requirements for nodes are also
minimal, since nodes only have to record and rebroadcast
blocks for most transactions (Figure 1).

The system is initiated with a genesis account containing
the genesis balance. The genesis balance is a fixed quantity
and can never be increased. The genesis balance is divided and
sent to other accounts via send transactions registered on the
genesis account-chain. The sum of the balances of all accounts
will never exceed the initial genesis balance which gives the
system an upper bound on quantity and no ability to increase
it.

This section will walk through how different types of
transactions are constructed and propagated throughout the
network.

A. Transactions

Transferring funds from one account to another requires two
transactions: a send deducting the amount from the sender’s

3

A B C

S

R

R

R

S

R

R

S

S

S

...
...

...

Ti
m

e

Fig. 3. Visualization of the block-lattice. Every transfer of funds requires a
send block (S) and a receive block (R), each signed by their account-chain’s
owner (A,B,C)

balance and a receive adding the amount to the receiving
account’s balance (Figure 3).

Transferring amounts as separate transactions in the sender’s
and receiver’s accounts serves a few important purposes:

1) Sequencing incoming transfers that are inherently asyn-
chronous.

2) Keeping transactions small to fit in UDP packets.
3) Facilitating ledger pruning by minimizing the data foot-

print.
4) Isolating settled transactions from unsettled ones.
More than one account transferring to the same destination

account is an asynchronous operation; network latency and
the sending accounts not necessarily being in communication
with each other means there is no universally agreeable way
to know which transaction happened first. Since addition is
associative, the order the inputs are sequenced does not matter,
and hence we simply need a global agreement. This is a key
design component that converts a run-time agreement in to a
design-time agreement. The receiving account has control over
deciding which transfer arrived first and is expressed by the
signed order of the incoming blocks.

If an account wants to make a large transfer that was
received as a set of many small transfers, we want to represent
this in a way that fits within a UDP packet. When a receiving
account sequences input transfers, it keeps a running total of
its account balance so that at any time it has the ability to
transfer any amount with a fixed size transaction. This differs
from the input/output transaction model used by Bitcoin and
other cryptocurrencies.

Some nodes are uninterested in expending resources to store
an account’s full transaction history; they are only interested
in each account’s current balance. When an account makes a

transaction, it encodes its accumulated balance and these nodes
only need to keep track of the latest block, which allows them
to discard historical data while maintaining correctness.

Even with a focus on design-time agreements, there is a
delay window when validating transactions due to identifying
and handling bad actors in the network. Since agreements in
Nano are reached quickly, on the order of milliseconds to
seconds, we can present the user with two familiar categories
of incoming transactions: settled and unsettled. Settled transac-
tions are transactions where an account has generated receive
blocks. Unsettled transactions have not yet been incorporated
in to the receiver’s cumulative balance. This is a replacement
for the more complex and unfamiliar confirmations metric in
other cryptocurrencies.

B. Creating an Account

To create an account, you need to issue an open transaction
(Figure 4). An open transaction is always the first transaction
of every account-chain and can be created upon the first receipt
of funds. The account field stores the public-key (address)
derived from the private-key that is used for signing. The
source field contains the hash of the transaction that sent the
funds. On account creation, a representative must be chosen to
vote on your behalf; this can be changed later (Section IV-F).
The account can declare itself as its own representative.

open {
account: DC04354B1...AE8FA2661B2,
source: DC1E2B3F7C...182A0E26B4A,
representative: xrb_1anr...posrs,
work: 0000000000000000,
type: open,
signature: 83B0...006433265C7B204

}

Fig. 4. Anatomy of an open transaction

C. Account Balance

The account balance is recorded within the ledger itself.
Rather than recording the amount of a transaction, verification
(Section IV-I) requires checking the difference between the
balance at the send block and the balance of the preceding
block. The receiving account may then increment the previous
balance as measured into the final balance given in the new
receive block. This is done to improve processing speed
when downloading high volumes of blocks. When requesting
account history, amounts are already given.

D. Sending From an Account

To send from an address, the address must already have an
existing open block, and therefore a balance (Figure 5). The
previous field contains the hash of the previous block in the
account-chain. The destination field contains the account for
funds to be sent to. A send block is immutable once confirmed.
Once broadcasted to the network, funds are immediately

4

deducted from the balance of the senders account and wait
as pending until the receiving party signs a block to accept
these funds. Pending funds should not be considered awaiting
confirmation, as they are as good as spent from the senders
account and the sender cannot revoke the transaction.

send {
previous: 1967EA355...F2F3E5BF801,
balance: 010a8044a0...1d49289d88c,
destination: xrb_3w...m37goeuufdp,
work: 0000000000000000,
type: send,
signature: 83B0...006433265C7B204

}

Fig. 5. Anatomy of a send transaction

E. Receiving a Transaction

To complete a transaction, the recipient of sent funds must
create a receive block on their own account-chain (Figure 6).
The source field references the hash of the associated send
transaction. Once this block is created and broadcasted, the
accounts balance is updated and the funds have officially
moved into their account.

receive {
previous: DC04354B1...AE8FA2661B2,
source: DC1E2B3F7C6...182A0E26B4A,
work: 0000000000000000,
type: receive,
signature: 83B0...006433265C7B204

}

Fig. 6. Anatomy of a receive transaction

F. Assigning a Representative

Account holders having the ability to choose a representa-
tive to vote on their behalf is a powerful decentralization tool
that has no strong analog in Proof of Work or Proof of Stake
protocols. In conventional PoS systems, the account owner’s
node must be running to participate in voting. Continuously
running a node is impractical for many users; giving a rep-
resentative the power to vote on an account’s behalf relaxes
this requirement. Account holders have the ability to reassign
consensus to any account at any time. A change transaction
changes the representative of an account by subtracting the
vote weight from the old representative and adding the weight
to the new representative (Figure 7). No funds are moved in
this transaction, and the representative does not have spending
power of the account’s funds.

G. Forks and Voting

A fork occurs when j signed blocks b1, b2, . . . , bj claim
the same block as their predecessor (Figure 8). These blocks

change {
previous: DC04354B1...AE8FA2661B2,
representative: xrb_1anrz...posrs,
work: 0000000000000000,
type: change,
signature: 83B0...006433265C7B204

}

Fig. 7. Anatomy of a change transaction

cause a conflicting view on the status of an account and must
be resolved. Only the account’s owner has the ability to sign
blocks into their account-chain, so a fork must be the result of
poor programming or malicious intent (double-spend) by the
account’s owner.

Account A
Block i

Account A
Block i+ 1

Account A
Block i+ 2

Account A
Block i+ 2

Fig. 8. A fork occurs when two (or more) signed blocks reference the same
previous block. Older blocks are on the left; newer blocks are on the right

Upon detection, a representative will create a vote referenc-
ing the block b̂i in its ledger and broadcast it to the network.
The weight of a node’s vote, wi, is the sum of the balances of
all accounts that have named it as its representative. The node
will observe incoming votes from the other M online repre-
sentatives and keep a cumulative tally for 4 voting periods, 1
minute total, and confirm the winning block (Equation 1).

v(bj) =

M∑
i=1

wi1b̂i=bj
(1)

b∗ = argmax
bj

v(bj) (2)

The most popular block b∗ will have the majority of the
votes and will be retained in the node’s ledger (Equation 2).
The block(s) that lose the vote are discarded. If a representative
replaces a block in its ledger, it will create a new vote with
a higher sequence number and broadcast the new vote to the
network. This is the only scenario where representatives vote.

In some circumstances, brief network connectivity issues
may cause a broadcasted block to not be accepted by all
peers. Any subsequent block on this account will be ignored
as invalid by peers that did not see the initial broadcast. A
rebroadcast of this block will be accepted by the remaining
peers and subsequent blocks will be retrieved automatically.
Even when a fork or missing block occurs, only the accounts
referenced in the transaction are affected; the rest of the
network proceeds with processing transactions for all other
accounts.

5

H. Proof of Work

All four transaction types have a work field that must be
correctly populated. The work field allows the transaction
creator to compute a nonce such that the hash of the nonce
concatenated with the previous field in receive/send/change
transactions or the account field in an open transaction is
below a certain threshold value. Unlike Bitcoin, the PoW in
Nano is simply used as an anti-spam tool, similar to Hashcash,
and can be computed on the order of seconds [9]. Once a
transaction is sent, the PoW for the subsequent block can
be precomputed since the previous block field is known; this
will make transactions appear instantaneous to an end-user so
long as the time between transactions is greater than the time
required to compute the PoW.

I. Transaction Verification

For a block to be considered valid, it must have the
following attributes:

1) The block must not already be in the ledger (duplicate
transaction).

2) Must be signed by the account’s owner.
3) The previous block is the head block of the account-

chain. If it exists but is not the head, it is a fork.
4) The account must have an open block.
5) The computed hash meets the PoW threshold require-

ment.
If it is a receive block, check if the source block hash is
pending, meaning it has not already been redeemed. If it is a
send block, the balance must be less than the previous balance.

V. ATTACK VECTORS

Nano, like all decentralized cryptocurrencies, may be at-
tacked by malicious parties for attempted financial gain or
system demise. In this section we outline a few possible attack
scenarios, the consequences of such an attack, and how Nano’s
protocol takes preventative measures.

A. Block Gap Synchronization

In Section IV-G, we discussed the scenario where a block
may not be properly broadcasted, causing the network to
ignore subsequent blocks. If a node observes a block that does
not have the referenced previous block, it has two options:

1) Ignore the block as it might be a malicious garbage
block.

2) Request a resync with another node.
In the case of a resync, a TCP connection must be formed
with a bootstrapping node to facilitate the increased amount
of traffic a resync requires. However, if the block was actually
a bad block, then the resync was unnecessary and needlessly
increased traffic on the network. This is a Network Amplifi-
cation Attack and results in a denial-of-service.

To avoid unnecessary resyncing, nodes will wait until a
certain threshold of votes have been observed for a potentially
malicious block before initiating a connection to a bootstrap
node to synchronize. If a block doesn’t receive enough votes
it can be assumed to be junk data.

B. Transaction Flooding

A malicious entity could send many unnecessary but valid
transactions between accounts under its control in an attempt
to saturate the network. With no transaction fees they are
able to continue this attack indefinitely. However, the PoW
required for each transaction limits the transaction rate the
malicious entity could generate without significantly investing
in computational resources. Even under such an attack in an
attempt to inflate the ledger, nodes that are not full historical
nodes are able to prune old transactions from their chain; this
clamps the storage usage from this type of attack for almost
all users.

C. Sybil Attack

An entity could create hundreds of Nano nodes on a single
machine; however, since the voting system is weighted based
on account balance, adding extra nodes in to the network
will not gain an attacker extra votes. Therefore there is no
advantage to be gained via a Sybil attack.

D. Penny-Spend Attack

A penny-spend attack is where an attacker spends infinites-
imal quantities to a large number of accounts in order to
waste the storage resources of nodes. Block publishing is rate-
limited by the PoW, so this limits the creation of accounts
and transactions to a certain extent. Nodes that are not full
historical nodes can prune accounts below a statistical metric
where the account is most likely not a valid account. Finally,
Nano is tuned to use minimal permanent storage space, so
space required to store one additional account is proportional
to the size of an open block+ indexing = 96B+32B = 128B.
This equates to 1GB being able to store 8 million penny-spend
account. If nodes wanted to prune more aggressively, they can
calculate a distribution based on access frequency and delegate
infrequently used accounts to slower storage.

E. Precomputed PoW Attack

Since the owner of an account will be the only entity
adding blocks to the account-chain, sequential blocks can be
computed, along with their PoW, before being broadcasted
to the network. Here the attacker generates a myriad of
sequential blocks, each of minimal value, over an extended
period of time. At a certain point, the attacker performs a
Denial of Service (DoS) by flooding the network with lots of
valid transactions, which other nodes will process and echo
as quickly as possible. This is an advanced version of the
transaction flooding described in Section V-B. Such an attack
would only work briefly, but could be used in conjunction with
other attacks, such as a >50% Attack (Section V-F) to increase
effectiveness. Transaction rate-limiting and other techniques
are currently being investigated to mitigate attacks.

F. >50% Attack

The metric of consensus for Nano is a balance weighted
voting system. If an attacker is able to gain over 50% of

6

the voting strength, they can cause the network to oscillate
consensus rendering the system broken. An attacker is able to
lower the amount of balance they must forfeit by preventing
good nodes from voting through a network DoS. Nano takes
the following measures to prevent such an attack:

1) The primary defense against this type of attack is voting-
weight being tied to investment in the system. An
account holder is inherently incentivized to maintain
the honesty of the system to protect their investment.
Attempting to flip the ledger would be destructive to the
system as a whole which would destroy their investment.

2) The cost of this attack is proportional to the market
capitalization of Nano. In PoW systems, technology can
be invented that gives disproportionate control compared
to monetary investment and if the attack is successful,
this technology could be repurposed after the attack is
complete. With Nano the cost of attacking the system
scales with the system itself and if an attack were to
be successful the investment in the attack cannot be
recovered.

3) In order to maintain the maximum quorum of voters, the
next line of defense is representative voting. Account
holders who are unable to reliably participate in voting
for connectivity reasons can name a representative who
can vote with the weight of their balance. Maximizing
the number and diversity of representatives increases
network resiliency.

4) Forks in Nano are never accidental, so nodes can make
policy decisions on how to interact with forked blocks.
The only time non-attacker accounts are vulnerable to
block forks is if they receive a balance from an attacking
account. Accounts wanting to be secure from block forks
can wait a little or a lot longer before receiving from
an account who generated forks or opt to never receive
at all. Receivers could also generate separate accounts
to use when receiving funds from dubious accounts in
order to insulate other accounts.

5) A final line of defense that has not yet been implemented
is block cementing. Nano goes to great lengths to settle
block forks quickly via voting. Nodes could be config-
ured to cement blocks, which would prevent them from
being rolled back after a certain period of time. The
network is sufficiently secured through focusing on fast
settling time to prevent ambiguous forks.

A more sophisticated version of a > 50% attack is detailed
in Figure 9. “Offline” is the percentage of representatives who
have been named but are not online to vote. “Stake” is the
amount of investment the attacker is voting with. “Active”
is representatives that are online and voting according to the
protocol. An attacker can offset the amount of stake they must
forfeit by knocking other voters offline via a network DoS
attack. If this attack can be sustained, the representatives being
attacked will become unsynchronized and this is demonstrated
by “Unsync.” Finally, an attacker can gain a short burst in
relative voting strength by switching their Denial of Service
attack to a new set of representatives while the old set is re-
synchronizing their ledger, this is demonstrated by “Attack.”

Offline Unsync Attack Active Stake

Fig. 9. A potential voting arrangement that could lower 51% attack require-
ments.

If an attacker is able to cause Stake >Active by a combina-
tion of these circumstances, they would be able to successfully
flip votes on the ledger at the expense of their stake. We
can estimate how much this type of attack could cost by
examining the market cap of other systems. If we estimate
33% of representatives are offline or attacked via DoS, an
attacker would need to purchase 33% of the market cap in
order to attack the system via voting.

G. Bootstrap Poisoning

The longer an attacker is able to hold an old private-key
with a balance, the higher the probability that balances that
existed at that time will not have participating representatives
because their balances or representatives have transferred to
newer accounts. This means if a node is bootstrapped to an
old representation of the network where the attacker has a
quorum of voting stake compared to representatives at that
point in time, they would be able to oscillate voting decisions
to that node. If this new user wanted to interact with anyone
besides the attacking node all of their transactions would be
denied since they have different head blocks. The net result
is nodes can waste the time of new nodes in the network
by feeding them bad information. To prevent this, nodes can
be paired with an initial database of accounts and known-
good block heads; this is a replacement for downloading the
database all the way back to the genesis block. The closer
the download is to being current, the higher the probability
of accurately defending against this attack. In the end, this
attack is probably no worse than feeding junk data to nodes
while bootstrapping, since they wouldn’t be able to transact
with anyone who has a contemporary database.

VI. IMPLEMENTATION

Currently the reference implementation is implemented in
C++ and has been producing releases since 2014 on Github
[10].

A. Design Features

The Nano implementation adheres to the architecture stan-
dard outlined in this paper. Additional specifications are de-
scribed here.

1) Signing Algorithm: Nano uses a modified ED25519
elliptic curve algorithm with Blake2b hashing for all digital
signatures [11]. ED25519 was chosen for fast signing, fast
verification, and high security.

2) Hashing Algorithm: Since the hashing algorithm is only
used to prevent network spam, the algorithm choice is less
important when compared to mining-based cryptocurrencies.
Our implementation uses Blake2b as a digest algorithm against
block contents [12].

7

3) Key Derivation Function: In the reference wallet, keys
are encrypted by a password and the password is fed through
a key derivation function to protect against ASIC cracking
attempts. Presently Argon2 [13] is the winner of the only
public competition aimed at creating a resilient key derivation
function.

4) Block Interval: Since each account has its own
blockchain, updates can be performed asynchronous to the
state of network. Therefore there are no block intervals and
transactions can be published instantly.

5) UDP Message Protocol: Our system is designed to
operate indefinitely using the minimum amount of computing
resources as possible. All messages in the system were de-
signed to be stateless and fit within a single UDP packet. This
also makes it easier for lite peers with intermittent connectivity
to participate in the network without reestablishing short-term
TCP connections. TCP is used only for new peers when they
want to bootstrap the block chains in a bulk fashion.

Nodes can be sure their transaction was received by the
network by observing transaction broadcast traffic from other
nodes as it should see several copies echoed back to itself.

B. IPv6 and Multicast

Building on top of connection-less UDP allows future
implementations to use IPv6 multicast as a replacement for
traditional transaction flooding and vote broadcast. This will
reduce network bandwidth consumption and give more policy
flexibility to nodes going forward.

C. Performance

At the time of this writing, 4.2 million transactions have
been processed by the Nano network, yielding a blockchain
size of 1.7GB. Transaction times are measured on the order
of seconds. A current reference implementation operating on
commodity SSDs can process over 10,000 transactions per
second being primarily IO bound.

VII. RESOURCE USAGE

This is an overview of resources used by a Nano node.
Additionally, we go over ideas for reducing resource usage
for specific use cases. Reduced nodes are typically called light,
pruned, or simplified payment verification (SPV) nodes.

A. Network

The network activity of a node is dependent on how much
the node contributes towards the health of a network.

1) Representative: A representative node requires maxi-
mum network resources as it observes vote traffic from other
representatives and publishes its own votes.

2) Trustless: A trustless node is similar to a representative
node but is only an observer, it doesn’t contain a representative
account private key and does not publish votes of its own.

3) Trusting: A trusting node observes vote traffic from
one representative it trusts to correctly perform consensus.
This cuts down on the amount of inbound vote traffic from
representatives going to this node.

4) Light: A light node is also a trusting node that only
observes traffic for accounts in which it is interested allowing
minimal network usage.

5) Bootstrap: A bootstrap node serves up parts or all of the
ledger for nodes that are bringing themselves online. This is
done over a TCP connection rather than UDP since it involves
a large amount of data that requires advanced flow control.

B. Disk Capacity

Depending on the user demands, different node configura-
tions require different storage requirements.

1) Historical: A node interested in keeping a full historical
record of all transactions will require the maximum amount
of storage.

2) Current: Due to the design of keeping accumulated
balances with blocks, nodes only need to keep the latest
or head blocks for each account in order to participate in
consensus. If a node is uninterested in keeping a full history
it can opt to keep only the head blocks.

3) Light: A light node keeps no local ledger data and only
participates in the network to observe activity on accounts in
which it is interested or optionally create new transactions with
private keys it holds.

C. CPU

1) Transaction Generating: A node interested in creating
new transactions must produce a Proof of Work nonce in order
to pass Nano’s throttling mechanism. Computation of various
hardware is benchmarked in Appendix A.

2) Representative: A representative must verify signatures
for blocks, votes, and also produce its own signatures to
participate in consensus. The amount of CPU resources for a
representative node is significantly less than transaction gener-
ating and should work with any single CPU in a contemporary
computer.

3) Observer: An observer node doesn’t generate its own
votes. Since signature generation overhead is minimal, the
CPU requirements are almost identical to running a represen-
tative node.

VIII. CONCLUSION

In this paper we presented the framework for a trustless,
feeless, low-latency cryptocurrency that utilizes a novel block-
lattice structure and delegated Proof of Stake voting. The
network requires minimal resources, no high-power mining
hardware, and can process high transaction throughput. All
of this is achieved by having individual blockchains for each
account, eliminating access issues and inefficiencies of a
global data-structure. We identified possible attack vectors on
the system and presented arguments on how Nano is resistant
to these forms of attacks.

APPENDIX A
POW HARDWARE BENCHMARKS

As mentioned previously, the PoW in Nano is to reduce
network spam. Our node implementation provides acceleration

8

that can take advantage of OpenCL compatible GPUs. Table I
provides a real-life benchmark comparison of various hard-
ware. Currently the PoW threshold is fixed, but an adaptive
threshold may be implemented as average computing power
progresses.

TABLE I
HARDWARE POW PERFORMANCE

Device Transactions Per Second
Nvidia Tesla V100 (AWS) 6.4
Nvidia Tesla P100 (Google,Cloud) 4.9
Nvidia Tesla K80 (Google,Cloud) 1.64
AMD RX 470 OC 1.59
Nvidia GTX 1060 3GB 1.25
Intel Core i7 4790K AVX2 0.33
Intel Core i7 4790K,WebAssembly (Firefox) 0.14
Google Cloud 4 vCores 0.14-0.16
ARM64 server 4 cores (Scaleway) 0.05-0.07

ACKNOWLEDGMENT

We would like to thank Brian Pugh for compiling and
formatting this paper.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: http://bitcoin.org/bitcoin.pdf

[2] “Bitcoin median transaction fee historical chart.” [Online]. Avail-
able: https://bitinfocharts.com/comparison/bitcoin-median transaction
fee.html

[3] “Bitcoin average confirmation time.” [Online]. Available: https:
//blockchain.info/charts/avg-confirmation-time

[4] “Bitcoin energy consumption index.” [Online]. Available: https:
//digiconomist.net/bitcoin-energy-consumption

[5] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake,” 2012. [Online]. Available: https://peercoin.net/assets/
paper/peercoin-paper.pdf

[6] C. LeMahieu, “Raiblocks distributed ledger network,” 2014.
[7] Y. Ribero and D. Raissar, “Dagcoin whitepaper,” 2015.
[8] S. Popov, “The tangle,” 2016.
[9] A. Back, “Hashcash - a denial of service counter-measure,” 2002.

[Online]. Available: http://www.hashcash.org/papers/hashcash.pdf
[10] C. LeMahieu, “Raiblocks,” 2014. [Online]. Available: https://github.

com/clemahieu/raiblocks
[11] D. J. Bernstein, N. Duif, T. Lange, P. Shwabe, and B.-Y. Yang,

“High-speed high-security signatures,” 2011. [Online]. Available:
http://ed25519.cr.yp.to/ed25519-20110926.pdf

[12] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein,
“Blake2: Simpler, smaller, fast as md5,” 2012. [Online]. Available:
https://blake2.net/blake2.pdf

[13] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: The memory-
hard function for password hashing and other applications,” 2015.
[Online]. Available: https://password-hashing.net/argon2-specs.pdf

